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ABSTRACT

Maximum likelihood inference for two important subclasses of multinomial-Poisson homogeneous-
function {MPH) categorical data models is described. Maximum likelihood fit results, which
include point estimates, goodness-of-fit statistics, and asymptotic-based approximating distri-
butions, are described and compared for equivalent models. As an example, the effect of the
sampling plan on the large-sample behavior of estimators is given in explicit form. The first sub-
class, the class of homogeneous linear predictor models, comprises MPH models that constrain
expected counts m through L{m) = X3, where the link L is allowed to be a many-to-one function.
Generalized loglinear models, qualitative dispersion trend models, and mean response models are
given as specific examples. The second subclass, the class of probability freedom models, com-
prises MPH models that constrain outcome probabilities 7w through m = Dfl(ZZTg(ﬁ))g(,@),
where the positive function g is sufficiently smooth and the matrix Z is determined by the
sampling plan. This class includes the product-multinomial models that lend themselves to the
multinomial-to-Poisson transformation.

Keywords: categorical data, equivalent models, homogeneous linear predictor model, large-sample

inference, multinomial-to- Poisson transformation, probability freedom model.

1 Introduction

Lang (2000) introduced the broad class of multinomial-Poisson homogeneous-function (MPH)
categorical data models and explored properties of MPH model maximum-likelihood estimators
and goodness-of-fit statistics. In addition, formal definitions of model equivalence were intro-
duced; they were based on equivalence-class partitionings of the collection of all candidate MPH
models. Equivalent models were compared on the basis of their maximum likelihood fit results,
which include point estimates, goodness-of-fit statistics, and asymptotic-based approximating

distributions. The results were quite general. They were stated for models specified using the
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model constraint h(m) = 0, where m is the vector of expected counts and h is any function in
H"(Z), a broad class of Z-homogeneous functions. The current paper explores important sub-
classes of h functions. By restricting attention to subclasses, we obtain additional useful results,
and gain further insight.

This paper introduces the useful class of homogeneous linear predictor models, which have
the generic form L{m) = X3, where the link L is allowed to be a many-to-one function. It
follows that this class is very broad and includes models that are not of the univariate or multi-
variate generalized linear model form (see, e.g., McCullagh and Nelder 1989; Fahrmeir and Tutz
1994). Large-sample, maximum-likelihood inference is described and the fit results from equiva-
lent models are compared. Generalized loglinear models (GLLMs) of the form Clog Mm = X3
(¢f. Grizzle et al. 1969, Lang and Agresti 1994) are typically counted among the members of the
homogeneous linear predictor models. As examples, GLLMs include standard loglinear, logit,
cumulative logit, multivariate logit (Glonek and McCullagh 1995, Glonek 1996}, and association-
marginal models (Lang et al. 1999). Links other than L{m) = ClogMm are considered as
well. For example, L(m} could be a vector of distribution summaries such as Gini-dispersions,
mean scores, or association measures like the gamma or kappa statistic (cf. Agresti 1990, pp.
22, 366). The current paper’s maximum likelihood fitting approach for these many-to-one link
models serves as an aftractive alternative to the more commonly used weighted least squares
approach (see, e.g., Grizzle et al. 1969, Stokes et al. 1995).

This paper also considers a class of MPH “probability freedom models” that includes the
product-multinomial and Poisson models of Baker (1994). In particular, Baker (1994) considered
product-multinomial models that constrain outcome probabilities through mg; = gx;(8)/ 22, 9x5(8),
where k indexes the independent multinomials and 3 is free to take on values in some unrestricted
space. That paper argued that for these models, the product-multinomial estimate of 8 and the
corresponding approximating variance estimate are identical to those for a particular, related
Poisson model, a model that is arguably simpler to fit. Instead of restricting attention to a
product-multinomial model and its Poisson relative, we more generally consider an MPH model
and its population equivalent Poisson model (as defined below in Section 2). We also give a
more detailed comparison of the maximum likelihood fit results for these population equivalent
models. For example, estimates of , m, and 3; their corresponding approximating variances;

and goodness-of-fit statistics are compared, using results of Lang (2000).
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This paper is organized as follows. Section 2 gives a brief overview of Lang (2000) and states
several of the more relevant results. Section 3 introduces, and explores large-sample likelihood-
based inference for, the class of homogeneous linear predictor models. Section 4 describes anal-
ogous results for the class of probability freedom models. Section 5 gives a summary and brief

discussion.

2  Overview of MPH Model Results

The current paper will use many of the same notations that were used in Lang (2000}. A sample
of these notations follows: The symbol D%(m) (or diag®{m;, i = 1,...,c}) represents the at®
power, where o is any real number, of the diagonal matrix with the components in m on the
diagonal. Functions that typically operate on scalars, like powers and logarithms, act on vectors
in a component-wise fashion. For example, log d is defined as (logé1,...,logds)7, where the T
represents the transpose. To denote a sum over a certain dimension of an array, a ‘+’ sign will
be used. For example, a matrix Z with components Z;; has kth column sum equal to Zy,. The
symbol ‘@’ represents a direct sum, so for example, EB,CK=1A;c is a block diagonal matrix with the
Ay’s making up the blocks. The indicator functional I{:) is defined as [(E) = 1 or 0 as the
condition E is true or false. Finally, when referring to definitions, theorems, sections etc. from
Lang (2000}, the original numbering used in Lang (2000) followed by the symbol “L* will be used
for ease of cross-referencing.

A vector of counts Y is said to be a multinomial-Poisson (MP) random vector if it comprises
independent multinomial and Poisson random variables. The sampling distribution of an MP
random vector is determined by a sampling plan, which in turn is characterized by a population
matrix Z, a sampling constraint matrix Zg and, when Zg # 0, a vector of a priori known sample
sizes n > 0. Population matrix Z satisfles the properties (i) Zjx = I(Z = 1), (ii) Zjy = 1, and
(i) Z4% > 1; it indicates the stratification scheme. Sampling constraint matrix Zr comprises a
subset of columns of Z; it indicates which stratum sample sizes are a priori fixed.

The MP sampling distribution can be parameterized in terms of E(Y) = m or {, 7}, where
v = Z"m is the vector of expected sample sizes and m# = D™HZZ"m)m is the vector of
outcome probabilities; notice that m = D{Z~)n. The notation Y ~ M Pz(m|Z g, n} means that
Y has an MP distribution determined by the sampling plan (Z,Zr,n). The (“unrestricted”)

parameter space is w(0[Zp,n) = {m: m > 0,Z¥m = n} or, in terms of {v,7), {{(v,7) : v =
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Qmn+Qgrd, 6> 0,7 >0, y AR = 1}. The matrix Q satisfies Zp = ZQp and the matrix Qg is
Qs orthogonal complement. These Q matrices are such that each column in Z is included in
one of Zr = ZQp or Zg = ZQp, but not both. In general, the density of Y ~ M Pz(m|Zg, n)

has the form
P(Y =y) = C*exp{y” logm — 172Em} = Cexp{yT logm + y'Zrlog Qv - 17QR~}, (1)

where C* = nlexp{—nT logn}/y! and C = n!/y! when Zg # 0 and C* = C = 1/y! when
Zp = 0. Here, the symbol x! = (2, zq,. .. ,:r:q)T! = zplag! -zl

As an example, suppose that Y = (Y11, Y12, Ya1,Y22)? ~ MPz(m|Zp,n), where Z = Zp =
®2_;1; and n = (15,25)T. Then (Y11, Y12) and (Y21, Y22) are independent multinomial random
vectors with sample sizes 15 and 25 and probability vectors (711, m2) = (mi1/m1y, mi2/mi4) and
(ma1,722) = (ma1/mas, Mog/may ). The m parameter space is {m : m > 0, m;; = 15, mg; = 25}
and, noting that Qy and Qp are the identity and zero matrix respectively, the (v, ) parameter
space is {(v,m) : 1 = 15,72 = 25,7 > 0,m+ = w4 = 1}. As another example, if Zr = 0,
then Y would comprise independent Poisson components. The m parameter space would be
{m : m > 0}, and noting that Qp and Qp are the zero and identity matrix respectively, the
(v, 7) parameter space would be {{(~,®) : y1 > 0,72 > 0,m > 0,m4 = moy = 1}. The reader
is referred to Sections 2L and 3L (Lang 2000) for further discussion of population and sampling
constraint matrices and for more examples of the MP distribution.

An MP model is characterized by a sampling plan (Z, Zr, n) and a model constraint function,
h. The notation Y ~ MPz(h|Zp,n} means that Y ~ MPz(m|Zg,n), where m falls in the
parameter space

w(hjZp,n) = {m: m > 0,Z;m = n, h(m) = 0}.

The corresponding (v, ) parameter space is {(v,7) : v = Qpn+ Qgd,d > 0,7 > 0,277 =
1, h(D(Z~)m) = 0}. The notation w({0|Zr, n) was used above for the “unrestricted” parameter
space, because the “unrestricted” model can be viewed as having model constraint function h
equal to the zero function; for this model there are only sampling constraints. Actually, when
Zp = 0, there are no sampling constraints either; in this case (i.e. Poisson sampling), the
notations Y ~ M Pz(h|0) and w(h|0) will be used.

Often the model constraint function h satisfies certain important properties. For example,

h is typically smooth and the constraints hi{m) = 0 are non-redundant. In addition, h is often



CLASSES OF MPH MODELS 5

homogeneous relative to the sampling plan. In particular, Lang {2000) defines a Z-homogeneous
function as follows:

Definition 3L. Let t = {x € R®: x > 0}. A function h : } —» R* is Z-homogeneous [of order
p=(p(1),...,p(u)"] if

h(D(Z&)x) = G(8)h(x), V6 >0, ¥x € £,

where G(8) = diag{éfjgg c 73 =1,...,u}. Here, Z is a ¢ x K population matriz and v(j) €
{1,...,K}. When the orders are not important the phrase in square brackets is omitled. The

function h is Z-homogeneous of order O if p = 0. In this special case,

h(D(Z8)x) = h(x), V>0, Vxe€ Q.

Lang (2000) gave several useful properties of Z-homogeneous functions. As an example, a
very useful property is as follows:
Proposition 4L (Generalized Euler’s Homogeneous Function Theorem). Provided first-

order derivatives ezist, h is Z-homogeneous of order p if and only if
ZTD(x)H(x) = AD(p)D(h(x})), Vx € Q,

where the matriz A has components that satisfy Ai; = I{Ay; = 1) and A; = 1. Moreover,
AD(p) = ddg(1)T/868, where d(8) is the diagonal vector of G(8). Here, G is the diagonal
matriz satisfying h(D(Z4)x) = G{d)h(x).

Several useful classes of Z-homogeneous functions were defined in Lang (2000). For example,
H(Z) [Hp(Z)] is the collection of all Z-homogeneous functions [of order pj. A particularly useful
collection of constraints for medeling purposes is H"(Z), defined as follows:

Definition 4L. The set H"(Z) contains all functions h : §) — R® that satisfy the following four

conditions:
Ho: w(h|0) = {x:x >0, h(x) =0} #0.
Hi: h has continuous second-order derivatives on §2.
Hy: H(x) = 6hT(x)/0x is full column rank u on €.
Hy: h e H(Z).
By convention the zero function is also included in H"(Z).
An MP model with model constraint function h that falls in H”{Z) is called an MP homogeneous-

function (MPH) model. Using the properties of Z-homogeneous functions, Lang (2000) argued
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that the MPH model constraint function h satisfies the following two important properties: (i)
h(m) = 0 if and only if h(s) = 0 and (ii) the collection of constraints, h(w) = 0 and ZT7 = 1,
are non-redundant. As an example of the usefulness of these properties, an MPII model has

(7,7} parameter space that can be written as a product-space, namely

{(7,®): ¥ =Qpn+ Qrb,5 > 0,7 > 0,Z77 = 1, h(D{Z~)7) = 0
={(v,m):vy=Qpn+ Qrd, 8 > 0,7 >0,Z T =1,h(m) =0
=D(Z,Zp,n) x w(h|Z,1),

where D(Z,Zp,n) = {vy : v = Qpn + Q4,8 > 0}. Moreover, by properties of functions in
H"(Z), the space w(h|Z,1) is a manifold (cf. Fleming 1977) and, therefore, topologically well-
behaved. Tt was this manifold, product-space representation that was exploited in the derivations
of many of the results in Lang (2000).

Lang {2000) gave formal definitions of model equivalence. T'wo equivalence-class partitions
of U(y), the collection of MPH models for data y, were considered. The first is induced by the
equivalence relation £ defined as follows. The symbols P and S(Z) represent the collection of
population and sampling constraint matrices (relative to Z), respectively.

Definition 5L. Two models M, My € U(y) are population eguivalent, denoted M, L Ma,
if there exists Z € P,Zap,Zor € S(Z), and h € H'(Z) such that My = MPz(h|Z,p,n;) and
Mo = MPz(h|Zor, ng).

The second equivalence-class partition of I/(y) is induced by the equivalence relation = defined
as follows.

Definition 6L.Two models M, Mg € U(y) ore equivalent, denoted My=My, if there ez-
ists Zn,%o € P,Z1r € S8(Z1),Zor € S(Z3), and h € H"(Z1) N H'(Zs) such that M; =
MPgz (h|Z1p,n1) and My = M Pz, (h|Zsp, na).

The sets £(h,Z,y) and £(h,y) are equivalence classes induced by the relations £ and =,
respectively. Any two models in £(h,Z,y) are population equivalent and any two models in
E(h,y) are equivalent. If two models are population equivalent then they are equivalent.

Equivalent models can be compared on the basis of their maximum-likelihood fit results,
which include point estimates, goodness-of-fit statistics, and asymptotic-based approximating
distributions.

Lang (2000) gave several numerical equivalence results for MPH models. For example, if
M and Mgy are members of £(h,y), and hence equivalent, then, assuming unique existence,

the maximum likelihood estimates rh; and rhg both solve the same set of restricted likelihood
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equations, viz.
y —m+ D(m)H(m)A
h{m)

= 0, (2)
where A is a vector of Lagrange multipliers. This leads to the numerical identities, 1y = o,
Al = Ag, and 7] = Nl_lNg'frg, where N; = D(ZiZg‘y),'é = 1,2. Also, goodness-of-fit statistics
and adjusted residuals (cf. Haberman 1973) for equivalent models are shown to be numerically
identical.

Lang (2000) gave several useful asymptotic results for MPII models. Among other things, it
was argued that 7 is typically a strongly consistent estimator of #r. It also gave the joint limiting
normal distribution of ML estimators (4,#, ). The limiting distribution of these estimators
was derived by linearly approximating equations related to the restricted likelihood equations
(2). Specifically, properly normalized versions of the estimators were shown to be asymptotically
equivalent to a linear function of a properly normalized version of N™'Y, where N = D(ZZTY).
The limiting distribution of the properly normalized sample proportions N~'Y was given and
shown to depend only on Z, not on the sampling constraint matrix Zp. Lang (2000} also proved
that for MPH models the three estimators %, # and X are asymptotically mutually independent.
This independence result was exploited in the derivation of the limiting distribution of properly
normalized m as well as other estimators.

As in Lang (2000), we will use asymptotic results to derive more practically useful approxima-
tion results. To facilitate this, Lang (2000) gave a formal definition of approximate normal distri-
bution. Paraphrasing Definition 7L ... Suppose that as 0 < o — oo, a*AP(U,—p,) 4, N(0,3X),
where p,, is o constant sequence, ¥ has positive diagonal terms, AP = diag{al*}, and a;/a —
b; > 0. If the sequence of malrices V,, stochastic or otherwise, satisfies a APV, AP £y
then U, is said to have an approrimate normal distribution with mean p, ond approzimating
variance V. We use the notations Uy ~ AN{(fig, Vo) and avar(Uy) = V.

The approximate normal AN definition is a generalization of the asymptotic normal AN
definition of Serfling (1980). The important difference lies in the fact that V, in the definition of
approximate normal is allowed to be stochastic, whereas Serfling’s definition of asymptotic normal
restricts attention to non-stochastic V. It was pointed out in Part I that if U, is AN (tos Vo)
then P(07U,, < gq) is well approximated by P(Ny < ¢o|Va), where Nu|Va ~ N(8T p,, 87V ,0);
the approximation error converges in probability to zero as « increases.

Lang (2000) gave several approximate normal results (Theorem 4L), as well as corresponding
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equivalence results. Equivalence results for goodness-of-fit statistics were also given. For economy
of space, we do not reproduce those results here.

Finally, Lang (2000) introduced, and explored properties of, the useful class of Z-homogeneous
statistics, A Z-homogeneous statistic of order p has the form S(m), where (i) m is the ML
estimator under M Pz(h|Zg,n}), with h € H"(Z), (ii) 8 € Hp(Z), and (iii} S has continu-
ous first order derivatives at the true w. One useful approximation result is that S(ih) ~
AN(S(m), %@lavar(m)a—%{%}ﬁ). In words, for the class of Z-homogeneous statistics, the ap-
proximating variance can be derived by a formal application of the delta method to S{ri). {This
formal method does not work for just any smooth function of m.) Another result that is use-
ful for comparing approximating distributions across sampling plans is that, when S is O-order
Z-homogeneous, the approximating variance does not depend on the sampling constraint matrix
Zr. As an example, this implies that the approximating variances of a 0-order Z-homogeneous

statistic for two population equivalent models are identical.

3 Homogeneous Linear Predictor Models

This section introduces the useful class of homogeneous linear predictor models, which has mem-
bers that are characterized as follows:

Definition 1. A Z-homogeneous linear predictor model is an MPH model that constrains m =
D(Z) through L{m) = XB, where (i) L(m) = a(v) + L(x), (i) alv1) - a(v2) = aly1/7:) -
a(1), and (i) UTL € H"(Z) for full column rank U, an orthogonal complement to X.

Throughout this section L will be referred to as the “link,” and U will denote a full column
rank matrix that spans the space orthogonal to the range space of X. For convenience, X is
assumed to be of full column rank.

It is important to note that, unlike univariate or multivariate generalized linear models (cf.
McCullagh and Nelder 1989, Fahrmeir and Tutz 1994), the link L is not required to be one-to-
one. This greatly broadens the class of models under consideration. Indeed the utility of the
constraint specification and corresponding derivation of the approximating distributions is that
it is well-suited for models with many-to-one links.

An important goal in the analysis of a homogeneous linear predictor model of the form
M Pz (h|Zp,n), where h(m) = UTL(m) € H"(Z), is to find the approximating distribution
of B3, the ML estimator of 8 = (XTX)"!XTL(m). As a first step toward this goal, we will
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find the limiting distribution of properly normalized L(xnh). As in Lang (2000), the subsequent
limiting results are valid for a sequence of models of the form Y, ~ M Pz(h|Zp,n,), where the
components in the expected count vector E(Y,) = m, = D(Z+,)m, approach infinity in such
a way that r, = 7 is fixed and 7, /v — w > 0 as v approaches infinity. For convenience, the
index v is dropped from the notation and we set W = D(Zw), D = D(#), and H = H(n).

By Lemma 6L, 4 and 7 are asymptotically independent normal random vectors. Their

limiting distributions are given in Lemma 3L and Theorem 2L, respectively. It follows that
v 2(L{m) - L(m)) = »"*(a(y) + L(%) - a(y) + L(m))

= v'2(a(4 /) — a(1)) + v"/*(L(#) - L{x))
4 N(0,3 + 3)

where
Y=o 3T “H{w)QrQF o By = 5 |87 - WTIDZZ'D]—
and
= WD - WD DW'H) 'H'DW™. (3)
Now, because a{vy) = L(m) — L{=), the chain rule gives
8a(v)¥  omToL(m)T . | OL(m)T
Oy 8y Om (Z7) o
a quantity that, when evaluated at v = 1, gives
da(1)” _ ZTDBL(W)T‘
oy or
Therefore, the aSymptotic variance 3; 4 2y simplifies to
S+ % =M ise . W-lDZZTD + DZD L (w)QxQhzT D) 2L

- Ao w2

The next theorem, which gives the limiting distribution of properly normatized fi, now fol-
lows immediately because ML estimator 8 = (XTX) 1XTL(1n1). For convenience, set Py =
(XTX)-1XT,
Theorem 1. Suppose that the sequence of homogeneous linear predictor models, M Pz{h|Z g, n},
with Z-homogeneous constraint h(m) = UTL(m), hold. Letting 8 be the ML estimator of 8 in

the expression L(m) = X3, the following limiting result is obtained.

JL (11'

v T
v1/2(ﬁ -B) A, N (0, PX [(Z* — IDZFZ};D]GLB(:) PE) 1
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where X% 1s defined in (3).

It is implicit that 3 is a sequence of parameters indexed by v. Therefore, it is generally not
appropriate to make statements like ,@1 Eif ; the correct statement is fi -p Lo

The next practically useful approximation result follows from the asymptotic result of The-
orem 1 and the approximation result (Ax 4L) of Lang (2000). For convenience, set D= D(rn),
H = H(th), and N = D(ZZTY).
Corollary 1. Under the conditions of Theorem 1,

B-p ~ AN (o,Px 2 favar ()]

OL()T Ly
Tom X))

where avar(m) = D — f)I:I(ﬂTf)fI)_II:I]j — N'DZrZED and N = D(ZZTY).

It is interesting to note that this approximating variance can be obtained by formally applying
the delta method directly to the function B=P xL(1h). As pointed out in Lang (2000}, it is
important to understand that this formal approach does net work for all functions.

The approximating variance a’uar(ﬁ) given in Corollary 1 can be rewritten in a form that
exploits the simple form of h and emphasizes the role of the sampling plan on the approximating
distribution. We give the result in the form of another corollary.

Corollary 2. Assume the conditions of Theorem 1 and define B = ag’élﬁ;)ﬁaLgmm)T. Then the

approzimating variance of B has the following form:  avar(B8) = V — A(Zr), where

V =Px[B-BU(U"BU)'U'B|P} and A(Zp) = PX?-Ii(—m-szD-l(zgy)zg

. 8L ()"
om?T b

PL.
The proof is immediate upon noting that H(rh) = QL-S(%ZU.

As we shall see, for certain classes of homogeneous linear predictor models, the matrix V
and/or the so-called “adjustment” matrix A(Zg) can be written in simpler and typically more
enlightening forms. For example, the adjustment A{Zg) reduces to the zero matrix when Zgp =0
(i.e. Poisson sampling) or, by Proposition 4L, when the link L is Z-homogeneous of order 0, i.e.,
L ¢ Ho(Z).

An interesting simplification of V can be derived when the derivative matrix OL(rh)?/0m
is of full column rank. In this case, the matrix B of Corollary 2 is non-singular. Expleiting the
relationship between full-column-rank orthogonal complements U and X, a matrix algebra result
pointed out in Bergsma (1997, p. 137), leads to the identity V = (X7B~!'X)~1. We summarize

in the form of another corollary to Theorem 1.
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Corollary 3. Assume the conditions of Theorem 1. If, in addition, the derivative matriz

AL(m)T /dm is full column rank on w(h|0), then the approzimating distribution of 3 is

. . -1 -1
5.5~ %o (XT [8L(m)]~)8L(m)T] x) azn),

AT m

where A(Zp) = P -gf(n—TlDZpD (ZEY)ZEDEI Ty case L € Ho(Z) or Zr = 0, the
adjustment A(Zp) =

Corollaries 1, 2, and 3 afford explicit comparisons of the 3 estimators for two equivalent ho-
mogeneous linear predictor models for data y, say My, Ma € E(h,y). First note that maximum
likelihood estimators ﬁl and /32 are numerically identical because fitted values rh; and 1y are
identical (see Lang 2000). The corollaries give the difference between the approximating variance
estimates as avar(8,) — avar(B,) = A(Zar) — A(Z1F). This difference is 0, i.e. the approximat-
ing variance estimates are identical, when the link L is 0-order Z;-homogeneous, 7 = 1,2, It is
also 0 when Zngp = Zop.

The general results of Lang (2000) can be used to make a more comprehensive compari-
son of maximum likelihood fit results for two equivalent homogeneous linear predictor models
My, My € E(h,y). In particular, (i) point estimates m; and riy are identical and the difference
between their approximating variances is avar(ih;) — avar(fs) = DZyrD(21,y)21.D -
DZ D YZToy)2ZT-D; (i) point estimates of outcome probabilities are related according to
1 = N Na#ry, where N; = D(Z;ZTy); (iii) the difference between their approximating vari-
ances is N3 2DZ,ZI DN, — N72DZ,ZT DN L; and (iv) goodness-of-fit statistics and residuals
are identical and have the same approximating distributions.

The next two subsections explore specific classes of homogeneous linear predictor models. By
restricting attention to these special classes, we can gain further insight into the roles of the link

and the sampling plan on the approximation results.
3.1 Generalized Loglinear Models

Generalized loglinear models (GLLM) have the form L(m) = Clog Mm = X3, where M satisfies
(i) My; > 0, (ii) E;—:l M;; > 0, and (iii} for some j € {1,..., K}, Y51 MinZn; = Y51 Mip;
the matrices CT and X are assumed to be of full column rank, without loss of generality; and
the model space is assumed to be non-empty. The matrix Z with components Z;; is a sampling

constraint matrix. The structure imposed on M forces Mm to include linear combinations of the
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m; within, not across, the populations defined by Z. Quite generally, the link L is a many-to-one
function. GLLMSs, which have been considered by many authors including Grizzle et al. (1969),
Haber (1985), Lang and Agresti (1994), Glonek and McCullagh (1995), Bergsma (1997), and
Lang et al. (1999), are becoming increasingly popular. The class of GLLMs includes loglinear,
logit, cumulative logit, multivariate logistic, and association-marginal models, to name just a
few.

It is often relatively simple to verify that a GLLM is a homogeneous linear predictor model.
We must show that L(m) = C log Mm satisfies the three conditions in Definition 1.

It will prove useful to define the following matrix.
Z(M) = D' (M1)MZ.

Loosely, we speak of Z(M) as being the population matriz induced by M. Technically, however,
Z(M) is not generally a member of the class of population matrices as defined in Section 2L
of Lang (2000}, as it will only satisfy the first two defining characteristics. We point out that
Z(M) = D“I(Mm)MD(m)Z, for every positive m, and that Z(I) = Z. The matrix Z{M)
satisfies the following two properties.

MD(Z4) = D(Z(M)é)M

log(Z(M)8) = Z(M)logé.

These properties imply that the first condition of Definition 1 is met. This can be seen as

follows: |

L(D(Z~)r) = Clog MD(Z~)r = CZ(M) log v + Clog M. (4)

Thus, I has the form L(m) = a(vy) + L{=).

The second condition of Definition 1 is also met, because a(vy;)—a(v,) = CZ(M)log~vy,/v; =
a(v1/va) — a(l).

Now consider the third and final condition of Definition 1. The constraint specification of
a GLLM has the form h(m) = UTL(m) = UTClogMm = 0. It will be assumed that C, M,
and U are chosen so that the first three conditions for h to be in H"(Z) are satisfied. This is
not a restrictive assumption, because h is smooth, and reasonable model specifications will lead
to full column rank H and non-empty parameter space w(h|0). What remains to be determined
is whether h is Z-homogeneous. The next lemma, which follows immediately from (4), gives a

simple sufficient condition.
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Lemma 1.If R{(CZ(M)) C R(X) then h is Z-homogeneous of order 0. Further, if CZ(M) =0
then Clog Mm is Z-homogeneous of order 0.

For the special case of loglinear models, logm = X3, Lemma 1 states that h{m) = U logm
is Z-homogeneous of order 0 if R(Z) C R(X), i.e., stated loosely, “if the model includes fixed-
by-design parameters.” Another special case is the logit model, Clogm = X3. Often CZ = 0,
because C has rows that create within-population contrasts of logm;’s. When this is the case,
Lemma 1 states that both Clogm and h(m) = U7 Clog m are Z-homogeneous of order 0.

We point out that sometimes ClogMm = X3 can be written as CylogMym = X,53,,£ =
l,..., L. In this case, h(m) = [hy(m)7, ..., hz(m)7]" and so h is Z-homogeneous of order 0 if
R(C¢Z(M,)) C R(Xy),2=1,...,L.

In summary, a GLLM with non-redundant constraints (so H is full column rank) and non-
empty parameter space is a Z-homogeneous linear predictor model if R(CZ(M))} C R(X).

If a GLLM is a Z-homogeneous linear predictor model with R(CZ(M)) C R(X), Corollary 2
gives the approximating variance of ﬁ, which can be written in the form avar (,fi) =V —A(Zp).
Both V and the adjustment matrix A(Zg) can be simplified for GLLMSs, as stated in the next
theorem and its corollary.

Theorem 2. Let GLLM M be a Z-homogeneous linear predictor model for data y of the form
Clog Mm = X, and suppose that R(CZ(M)) C R(X). Then

B-8 ~ AN(0,avar(B) =V - AD~YZLY)AT),

where V is as defined in Corollary 2 and A is a full-column-rank matriz that satisfies XA =
CZM)Qr = CDY{M1)MZpr. In case Zr = 0 (i.e. Poisson sampling) and/or the link
ClogMm is Z-homogeneous of order 0, so CZ{M) = 0, the adjustment matriz AD™H(ZEY)AT
vanishes.

Proof of Theorem 2: The derivative OL(rn)? /8m in the adjustment matrix A(Zp) of Corollary
2 can be replaced by its specific form for GLLMs, namely M D~} (Mr)C?. Using the fact that
Z(M) = D~}{(M1)MZ = D~}{(Mm)MD(m)Z for all positive m, we can write

A(Zp) = PxCZ(M)QD Y (ZLY)QFZ(M)" CTP%. (5)

But, there exists a full column rank matrix A that satisfies XA = CZ(M)Qp = CD™'(M1)MZp,
because R(CZ{M)Qr) C R(CZ(M)) C R(X}. Replacing CZ(M)Qp in (5) by XA gives the
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initial result. The vanishing-adjustment result follows from the general form of the adjustment
matrix given in Corollary 2. N |
Corollary 4. Assume the conditions of Theorem 2. If in addition the derivative matriz

AL(m)T /6m = MTD~Y{Mm)C7T is of full column rank, then
_ -1
avar(B) = (XT [CD‘l(Mm)MﬁMTD‘l(Mm)CT] 1){) — ADYHZTY)AT, (6)

where A is full column rank and satisfies XA = CD ' (M1)MZp. In case Zp = 0 (i.e. Pois-
son sampling) and/or the link ClogMm is Z-homogeneous of order 0, so CZ(M) = 0, the
adjustment matriz AD"YZLY)A” vanishes.

The proof of Corollary 4 follows immediately from Corollary 3 and Theorem 2. The next
corollary, which also follows immediately from Theorem 2, gives a result that is useful for com-
paring inferences about 3 for equivalent models. |
Corollary 5. Assume the conditions of Theorem 2. If B;, the #h component in B, corresponds to
o column in X that is not needed to span the range space of CD_I(MI)MZF, then afuar([?i, ﬁj) =
Vij, Y, where Vi; is the (4, D" element in V. That is, the approzimating coveriances do not
depend on the sampling plan.

Notice that the special class of GLLMs with links of the form L(m) = Clog m, with C of

full row rank, will give
. .- -1 -1
avar(B) = (XT [cD 1CT] X) — ADHZLY)AT,

provided C is full row rank and R(X) D R(CZ). In this case, A satisfies XA = CZp. If
CZr = 0, as it will, for example, for logit models, then A = 0. Otherwise, for example for
loglinear models, the adjustment is generally non-zero. In this case, Corollary 5 can be used to
compare equivalent model 3 variance estimators. This generalizes the result of Palmgren (1981)
and Lang (1996), where product-multinomial and Poisson loglinear models were compared.

Example 1: Marginal Stochastic Ordering. Let (B, A} be the before-intervention and after-
intervention 3-level ordinal response for a randomly selected subject. To be explicit, assume that
both responses take on one of the three possible values 7 < z2 < xz3. It is of interest to test
the null hypothesis Hy : “B and A have the same distribution” against the alternative H, : “B
is stochastically larger than A;” ie. P(B < z;) < P(A < z;),7 = 1,2, with at least one strict

inequality. A paired-comparison experiment is conducted; the resulting data are summarized in
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the following 3 x 3 table:

A
Ty Tz X3
z1 |14 4] 3|21 (7)
B x| 10|15] 7|32
3| 8] 9(24 |41
32 28 34 W
That is, the sufficient cross-classification counts are y = (y11,912,-..,%33)° = (14,4,...,24)7,

where y;; is the number of (B = z;, A = x;) events observed.

A reasonable model for the data isy «— Y ~ MP,(m|ZFp,n), where Zp = 19 or Zp = 0,
depending on whether the sample size 94 was a priori fixed or a realization of a Poisson random
variable. For this model, the stochastic ordering hypothesis H; is equivalent to logm;, <
logmyq, log(myy + may) < log{mg4g + mag), with at least one strict inequality. Iquivalently,

the hypothesis can be stated in terms of odds, viz.

1 m m
log # S 10g +1 log mit + 2+ S log M_

7
moy + May Mg -+ 1mys mye my3

A one-degree of freedom, one-sided test of stochastic ordering can be derived if it can be assumed
that odds{A < x1)/odds(B < z1) = odds(A < z3)/odds(B < z3). Under this assumption, a
reasonable GLLM is as follows:

my
log —— =@, log ——————
M2+ + M3t My + My3 M3+ M43

M1 miy + Moy Myl + My

In matrix form, this GLLM can be written as L(m) = ClogMm = X3, where

1110600000
000111111
1 =10 0 0 0 0 0 100100100 10
0 0 1 -10 0 0 O 011011011 10
C=lo 000 1-100!'"M=|1 11111000 %01
O 0 00 0 0 1 -1 000000111 0 1
110110110
(001001001

It is straightforward to see that the link L is 0-order 1-homogeneous and that the constraint
function h(m) = UTL(m) is a member of H4(1). Hence, this MP GLLM is a homogeneous
linear predictor model. Theorem 2 gives the approximating distribution of B. Moreover, because

the link L has full column rank derivative and is 1-homogeneous of order 0, Corollary 4 gives

. . -1 -1
avar(ﬁ)=(XT [CD (M) MDMTD~ (Mii)C” | x) .

=oq+T, log——— = a9, log—— = =g+,

— O o~ O

551
149
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Notice that inference about 3 does not depend on the choice of sampling constraint matrix Zg.
That is, whether the counts are realizations of a single multinomial or four independent Poissons,
large-sample inferences about 3 are the same.

The observed data fit the restricted GLLM reasonably well (G2 = 1.03, df = 1). The
maximum likelihood estimate of 7 is ¥ = 0.422 (ase = y/avar = 0.204}. For this restricted
model, the parameter 7 is zero or positive as Hy or Hy is true. Therefore, a reasonable test of
Hy versus Hj can be obtained by referring the observed statistic 7/ase(7) = 0.422/0.204 = 2.07
to the right tail of the standard normal distribution. The approximate p-value is 0.02, so there
appears to be a statistically significant shift in the marginal distributions, with B stochastically
larger than A.

Example 2: Marginal Homogeneity. Consider the setting and data of the previous example.
Suppose, however, that it is of interest to test Hy : “B and A have the same distribution” versus
the broader alternative Hf : “B and A have different distributions.” Again, the data are modeled
asy — Y ~ MP(m|Zp,n), where Zp = 1g or Zr = 0 depending on whether the sample size 94
was a priori fixed or a realization of a Poisson random variable. For this model, 7 is equivalent
to logmiy #logmyy, and/or log(miy + moy) # log(my + m42). Therefore, it is reasonable

to consider the following GLLM:
logmiy = o1, logmyy = oy + 7, loglmyy +may) = ag, log(myr +mys) = aa + .

which has the matrix form L{m) = log Mm = X3, where

111000000 100 07[am
100100100 101 0| a
M=l1 11111000/ *F |o100]|]|mn

110110110 0101]|!m

This MP GLLM imposes no model constraints, i.e. h is the zero function. Therefore, the model
is a homogeneous linear predictor model. Moreover, because M is full row rank, the link L
has full column rank derivative. It follows that 3 has an approximate normal distribution with

approximate mean 3 and, using Corollary 4, approximating variance
o . -1 N\
avar(B) = (XT [D*l(Mrh)MDMTD*l(Mrh)] x) — AD YZLY)AT.

Here, the matrix A satisfies XA = D™Y{M1)M1Qr = Qr1ls, where Qf equals 1 or 0 depending

on whether the sample size 94 was fixed a priori or not. In either case, the first two columns of



CLasses oF MPH MoDELS 17

X span (Qpl4, so Corollary 5 implies that inference about the two 7 parameters does not depend
on the choice of sampling constraint matrix Z . That is, whether the counts are realizations of a
single multinomial or four independent Poissons, large-sample inferences about 7 are the same.

We fit this unrestricted GLLM and obtained the following maximum likelihood fit results:

1 = 0.421, 7 = 0,124,
avar(#) = | 00372 00071
~ | 0.0071 0.0085 |

For this GLLM, the marginal homogeneity hypothesis Hy is equivalent to 7 = 0. Therefore, a
two degree of freedom test of Hy versus H{ could be obtained by referring the Wald statistic
#+Tlavar(#)]~'4 = 5.03 to the right-hand tail of the central x?(2) distribution. This gives an
approximate p-value of 0.08. Alternatively, the likelihood ratio test of Hp versus H{ could be
used. This gives G* = 5.21, df = 2 for an approximate p-value of 0.07. Evidently, there is
insufficient evidence at the 0.05 level to reject the null hypothesis of marginal homogeneity. This
is in contrast to the conclusion of Example 1, where a restricted- alternative (i.e. stochastic

ordering} to marginal homogeneity was used.

3.2 Homogeneous Linear Predictor Models with 0-order Links

This section restricts attention to MP models that constrain m through L(m) = Xg3, where
the link L is 0-order Z-homogeneous and UTL is in Hj(Z). That these models are in fact
homogeneous linear predictor models, is straightforward to see—simply set a(-) equal to the zero
function in Definition 1.

Corollary 2 implies that ﬁ— B ~ AN (0,V) and, hence, the sampling plan plays no role in this
approximating distribution. Specifically, because the link function L is 0-order Z-homogeneous,
Proposition 4L implies that adjustment matrix A{Zp) is zero. Evidently, any two equivalent
homogeneous linear predictor models with 0-order link give rise to numerically identical 3 esti-
mators that have identical approximating variances.

aL(m)T
am

As noted above, the matrix V simplifies when, in addition, the derivative matrix is

full column rank. For this class of 0-order link models, Corollary 3 states that the approximating

variance can be re-expressed simply as
avar(B) = (XTB~1X) 1, (8)

where B is defined in Corollary 2.
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The next two examples of 0-order link models make use of these results. They also serve to
illustrate just how broad and how useful this class of models is.
Example 1: Trend Model for Qualitative Dispersion. Consider the following table of
counts taken from Lloyd (1999, p. 72).
Table 1. Marital Status of Danes Data

Age | Single Married Divorced | Sample Gini
17-21 17 1 0 0.105
21-25 16 8 0 0.444
25-30 8 17 1 0.476
30-40 6 22 4 0.477
40-50 5 21 6 0.510
50-60 3 17 8 0.538
60-70 2 8 6 0.594

70+ 1 3 5 0.568

The sample Gini-dispersion measure is given for each population, where populations are
defined by the eight age groups. Let S and A represent the marital status and age of a randomly
selected subject. The true Gini-dispersion measure for population k is given by G, = 1 -
Zg-’:l[P(S = j|lA = k)]?, and can be interpreted as follows. Suppose that two subjects are
independently and randomly selected from population k; the probability that their outcomes
are different is Gg. Of interest is whether there is a positive linear trend in the Gini-dispersion
measures over age groups. We restrict attention to the linear trend model Gy = o + Bz, k=
1,...,8,, where {z}} is a collection of scores assigned to the age groups.

Initially, we'll assume that the data y = (y11, ¥12, Y13, Y21, - - -, ¥s3). = (17,1,0,16,...,5)7 are
the result of sampling plan (Zy,Z1#,n;1), where Z; = @2:113; the sampling constraint matrix
Z1p is left unspecified. That is, a stratified sample of subjects from each of the 8 age groups is
taken; whether a sample size is fixed a priori or is random is left unspecified. For this MP model,
say M Pz (m|Z1r,n;}, the probabilities are defined as

mij = P(S = jlA=k) = (D7 (ZiZ{m)m) = Mg
7 Mgt
Thus, G =1 — Z?:l frﬁj =1- E?=1(mkj/mk+)2, and the trend model of interest, say M, =
M Pz (h|ZiF,ny), can be specified as

1— 32 (myj/miy)? Ty

L= Yjaalma/mas)® || 1 [ fo } = X0 (9)

f—

L(m) =

1= 33 (maj/msr)? 1 zg
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or, equivalently, h(m) = U”L(m) = 0, where U is an 8 x 6 full-column-rank matrix that spans
the space orthogonal to the range space of X. This M P model is a homogeneous linear predictor
model with O-order link.

It follows that ML estimator E)’ ~ AN (3,V), or, because B is non-singular in this setting,
g8 ~ AN (8, (XTB~'X)~1). As noted above, this approximate normal distribution does not
depend on the sampling constraint matrix Z g, so the approximation is valid for stratified Poisson
or multinomial sampling,.

Now suppose hypothetically that instead of a stratified random sample, a cross-sectional
random sample was taken, so the population matrix is Zo = 194. Whether the total sample size
is fixed a priori or random is left unspecified; that is, the sampling constraint matrix Zop is left

unspecified. For this MP model, say M Pz,(m|Zar, ny), the probabilities are defined as

. _ ml\.
Ty = P(A=k S =j) = (D 1(ZgZ§m)m)kj = ’m—;’
so that P(S = j|A = k) = my; /My = my;/me4. This implies that Gy = 1 - E?Zl(mkj/mH)Q,

and the trend model, say My = M Pgz,(h|Z2r, ng) can be specified using the same link and design
matrix (or same constraint function h) as in (9) for model M;. Obviously, L is Zo-homogeneous
of order 0 and the model My is also a homogeneous linear predictor model.

In fact, the two models A and M are equivalent. By results herein, large-sample inferences
about @3, the Gini dispersion values G’s, and the goodness of fit of the trend model will be
identical for the two models.

The linear trend model M, was fitted, with =, scores (1.9,2.3,2.7,3.5,4.5,5.5,6.5,8) corre-
sponding to mid-points of the age intervals. The likelihood-ratio statistic for testing the goodness
of fit of the linear trend model did not indicate overall lack of fit (G? = 6.62, df = 6). However,
the first sample dispersion value 0.105 was much smaller than the fitted value 0.400, indicating the
possible need for a more general model. For illustrative purposes, we do not pursue better fitting
models here. Instead, we address our objective of testing whether the linear trend term (3 is posi-
tive. To this purpose, we refer the observed Wald statistic ﬁl/\/ avar ([31) = 0.0363/0.0140 = 2.59
to the standard normal distribution, and obtain an approximate p-value of 0.005. There is a sta-
tistically significant positive linear trend in the Gini-dispersion measures.

Example 2: Mean response models.

Mean response MP models can be specified as Y ~ M Pz{(m|Z, n), where L(m) = M (m) =

X3, and 7w(m) = D~YZZTm)m is the vector of probabilities. The link vector Mm(m) comprises
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a collection of linear combinations of probabilities, where M is a full row rank matrix of scores.
Generally, M is not full column rank so L is a many-to-one link. Because of this, commonly-used
statistical software fits these models using weighted least squares (see, e.g., Stokes et al. 1995,
pp. 386-392) rather than maximum likelihood.

The maximum likelihood estimator B has approximating variance avar(,@) = V that, for these
mean response models, has a particularly simple form. Because AL(m)7/0m = D™ (m)[D (7 (m))--
D(7(m))ZZT D (7 (m))|MT7, a little algebra shows that B = Mavar(N 1Y) MT, where avar(N 1Y) =
N'l(]f) — N"llf)ZZT]f))N“1 is the approximating variance of the vector of sample proportions.
Furthermore, provided the derivative matrix 8L(m)” /8m is of full column rank, as it typically

will be, we can give a very simple form for the approximating variance, namely,
. 21 oyl
avar(B) = (XT [M[avar(N_lY)]MT] X) :

As before, any model in the same equivalence class £(h,y), where h(m) = U Mn(m), will
give numerically identical ML estimates of 3 and numerically identical approximating variances.
Similarly, equivalent models will give identical goodness of fit statistics and adjusted residuals.

As a concrete illustration, consider the paired-comparison experiment and resulting data (7)
of Example 1, Section 3.1. Assume that it makes sense to assign the scores z; < 3 < z3 to
the three levels of both responses. A research hypothesis of interest is E(A) # E(B), where
E(A) =3 2;P(A = z;) and E(B) = 33, ;P(B = z;). That is, the mean after-intervention
response is hypothesized to be different than the mean before-intervention response.

As stated previously, a reasonable data model has random component y = (y11,%12, .-, ygg)T =
(14,4,...,24)T «— Y ~ MPyz(m|Zp,n), where Z = 1g and Zp is either 0 (Poisson sam-
pling) or 1g (full-multinomial sampling with n = 94 fixed a priori). For this MP model,
mi; = myifmyy = P(B = z;, A = x;). A relevant systematic component has the form

L{m) = Mm(m) = X3, where

r1 1 X1 T9g I X9 T3 I3 X3 10 «
m =1m \,’I = X - N
Tr( ) /m++’ Ty T2 T3 T IT9 X3 Ty I3 X3 ] ! ﬁ [ 11 :| [ ﬁ ]

Note that L(m) = [E(B), E(A)]7 and L € Ho(Z). In fact, this MP model is a Z-homogeneous
linear predictor model with O-order link.
We fitted the model with scores {z; = i} and, for convenience, Zr = 0. The ML estimates

of @ and 3 are & = 2.213 and 8 = —0.191; the approximating standard errors are ase(&) =
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v/avar(&}) = 0.081 and ase(B) = 0.089. These estimates and standard errors would not change
if the multinomial model with Zg = 1g were fitted. Now, because § = E(A) — E(B), we can
test whether E(A) # E(B) by referring the observed Wald statistic (B / ase(ﬁ))z = 4.592 to the
x*(1) distribution. The approximate p-value is 0.032. Alternatively, a test of E(A) = E(B) vs.
E(A) # E(B) could be based on the goodness of fit of the reduced model with X = {1, 1]*. For
this reduced model, the observed likelihood-ratio statistic is G? = 4.486 (df = 1); referring this
value to the x%(1) distribution gives an approximate p-value of 0.034. Note that the value of
G? and its x2(1) approﬁimating distribution would not change if, instead of the Poisson model,
the multinomial model with Zp = 1g were fitted. In sum, because the p-values are relatively
small (0.032 and 0.034), we conclude that there is statistical evidence that the before and after
mean responses are different. As an aside, it is interesting to note that if the row and column
marginal counts of (7) were incorrectly treated as independent multinomial realizations, one
would conclude that there is insufficient evidence to reject the null hypothesis E(A) = E(B)—
the null model goodness-of-fit statistic value is G? = 2.596 (df = 1), which gives an approximate
p-value equal to 0.107.

Before closing this section, we make two comments. First, although we gave just two examples,
the 0-order homogeneous linear predictor models include many other important many-to-one
link models. Example 1 used the Gini-dispersion and Example 2 used a mean score, but any
distribution summary measure could be used. Moreover, these measures need not summarize
univariate distributions; one could compare bivariate association measures, like the kappa (cf.
Cohen, 1960) or gamma (cf. Goodman and Kruskal, 1979) statistics, across populations (see, e.g.,
Carr et al. 1989 or Stokes 1999). It is also important to note that we do not need independent
estimates of the distributions that are to be summarized and compared. As illustrated by the
marginal mean response model example above, the margins of multivariate distributions can be
summarized and compared as well.

The second comment regards the fitting method. The form of the approximating variance of
equation (8) hints at a possible relationship between the maximum likelihood and weighted least
squares {Grizzle et al. 1969) fit results. Indeed, for 0-order homogeneous linear predictor models
that satisfy the conditions of Corollary 3, it can be shown that the approximating variance of
the ML estimator fi given in (8) also serves as an approximating variance of the weighted least

squares (WLS) estimator ,@w. In practice, the ML approximating variance is not used in the
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WLS analysis for the obvious reason—it requires computation of the ML estimates. Instead,
an asymptotically equivalent estimate based on the empirical proportions is used. We point
out that in sparse data settings this empirical-proportion-based estimate can have poorer finite-
sample properties than the ML estimate. In a subsequent paper, the ML-WLS relationship is

more fully explored.

4 Probability Freedom Models

Baker (1994) considered product-multinomial and Poisson models that, using the current nota-
tion, constrain the probabilities through = = D~1(2Z27 g(3))g(8), where B is a p x 1 “freedom”
parameter; i.e. allowable values of the vector 3 comprise a p-dimensional set that without loss
of generality can be taken to be RF. That paper argued that for these models, the product-
multinomial estimate of 3 and the corresponding approximating variance estimate are identi-
cal to those for a particular, related Poisson model, a model that is arguably simpler to fit.
Baker (1994) described the multinomial-to-Poisson transformation, which transforms a product-
multinomial model into the appropriate Poisson model. As a simple example, consider a 2 x 2
table where the row counts make up two independent multinomials. The product-multinomial
model of row homogeneity can be specified as 7 = (13, 12, T21, me2)” = (7/(1 + &%), 1/{1 +
e®), ef /(1 + e%), 1/(1 + e®))T. The multinomial-to-Poisson transform gives the corresponding
Poisson loglinear model as log m = (¢ + 3, ¢1, 2 + 3, ¢2)7 . Baker (1994) argues that inferences
about 3 are identical for the product-multinomial and Poisson models. Baker gives several other
useful examples.

Instead of restricting attention to a product-multinomial model and its Poisson relative, we
more generally consider an MP model and its population equivalent Poisson model (as defined
in Section 2). The equivalence results of Lang (2000}, some of which are included in this paper,
can be used to compare the MP and Poisson model maximum likelihood fit results, including
point estimates of 7r, m, and 3; the corresponding approximating variances; and goodness-of-fit
statistics.

Recalling that 7 = D }(ZZTm)m in an MP model, the MP analogue of the product-
multinomial freedom model of Baker (1994) can be written as M; : y — Y ~ MPz(m|Zp,n),

where m falls in the parameter space

wi={m:m>0,Ztm=n, D~YZZTm)m = D 1(ZZ7g(B))g(B), B € R'}.
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Here, as in Baker (1994), g is a positive function and the sufficiently smooth function
f(3) = DHZZ7g(B8))g(B) is one-to-one on RP. For definiteness, suppose that Z is ¢ x K.
Define £51 : w(0|Z,1) — RP as the extension of the one-to-one inverse function £ : f(RP) -
RP. Also, define the link function L as T.(m) = D~HZZ"m)m. It follows that
w; ={m:m>0,Zfm = n, L(m)_f(,@) 8 e RP}
={m:m>0,Zfm = n,L(m) — f(f;}(L(m))) = 0}
={m:m>0,Z£ =n,h(m —0}
= w(h|Z g, n),
where h(m) = 0 comprises the © = ¢c— K —p non-redundant constraints in L{m)—f(f, *(L(m))) =
0. Note that for sufficiently smooth f, the constraint function h, which only depends on m through
L{m), will fall in H§(Z). Thus, the MP model M; = M Pz{(h|Zf,n) is homogeneous and, hence,
a member of the equivalence class £(h,Z,y).
Consider the population equivalent Poisson model My = M Pz(h|0) € £(h,Z,y), with pa-

rameter space
w(h|0) ={m:m > 0,h(m) =0} = {m : m > 0,L(m) = f(8), 3 € RP}.
This parameter space can be re-written in a useful way, namely,
w(h|0) = {m : m = D(Z~)g(B),v > 0,8 € R"} = w;.

To see this, note that m € w(h|0) implies that

m =D(ZZ"m)D"(ZZ"g(8))g(8)
= D(Z(Z2"m/Z"g(B)))g(B) = D(Z7)s(B),
where v = ZTm/ZTg(B) > 0. Thus, m € ws. If m € wy then, using properties of population

matrix Z,

D*‘(ZZTm)m ZZ7D(Zv)g(B))D(Z )g( )

(
“YZ~)D~Y(ZZ7g(8))D(Z7)e(B)
“Y(22"g(8)s(B)

and m = D(Z~)g(8) > 0. Thus, m € w(h|0).

Summarizing, we have that the MP model M; and the Poisson model M» are population
equivalent homogeneous models. Model M; has parameter space w; = {m : m > 0,Ztm =
n,w = D YZZTg(B))g(B), B € R’} and model Mj has parameter space wy = {m : m =
D(Zv)g(B),~v > 0,8 € RP}.
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Using the equivalence results of Lang (2000), we make several useful observations regard-
ing the comparison of the fit results for the two models M; and My, The first of these ob-
servations leads to a comparison result that was noted by Baker (1994) for the special-case
product-multinomial setting; the remaining observations give a more complete description of
the comparisons. (1) The ML estimator of 8 under M;, say B;, is equal to £ (L(ry)), and
hence is a Z-homogeneous statistic of order 0 (see Section 2). The Z-homogeneous statistics
results of Section 7L (Lang 2000}, imply that not only are fil and ,@2 numerically identical, they
also have identical approximating variance estimates. (2) Goodness-of-fit statistics and adjusted
residuals are identical. (3) Fitted values are numerically identical, i.e. r; = my. (4) Their
approximating variance estimates are related through avar(in,) = avar(ty) — N"1DZ FZ};]f),
where N = D(ZZ7y) and D = D(1hy). (5) Probability estimates are numerically identical; i.e.
71 = 9. (6) Their approximating variance estimates are identical and can be computed as
avar(fr1) = avar(fs) = N quar(thy)N~! - N2DZZTDN"1.

Example. Consider the MP model Y ~ M Pz(m|Zg, n) for data y = (y11, ¥12, ¥21, ¥22)* , where

T
1100 . .
Z= [ 00 1 1 J and m is constrained through

L{m) = D~YZZ"m)m = = = D™'(Z2"g(#))s(8) = £(8),

where g(8) = (¢?,1,6%,1)7. This is the model of row homogeneity. For this model f~! :
f(R) — R can be defined as f1(x) = log{l — x3) — log(z2). The extension f; ! has the same
definition, but its domain is {x : x > 0,ZTx = 1}. It follows that L(m) — f{f, }(L(m))) =
(0,0, 91 /may. — mi1/miy, maa/may —mia/miy)T, and theone (c ~ K —p=4—-2-1=1)
non-redundant constraint is A(m) = mo; fmay — my1/miy =0.

The population equivalent Poisson model M Pz(h|0) has parameter space w(h|0) = {m : m =

D(Zv)g(B),~ > 0,8 € R}, which can be written as
w(h|0) = {m : myy = 1’ mpz = w16 > 0,k = 1,2, f€ R}

This Poisson model has the simple loglinear form logm = (¢ ++ 8, é1, 2 + 3, $2)7, where ¢, =
log(+r}. By the results of this section, this Poisson loglinear model can be fit, and the fit results
explicitly modified so that they coincide with the fit results for the population equivalent MP

freedom model.
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5 Discussion

This paper set out to explore properties of maximum likelihood fit results for two important
subclasses of MPII models. Both subclasses, homogeneous linear predictor models and proba-
bility freedom models, have the generic form L{m) = f(3), where m is the vector of expected
counts and 3 is a parameter vector of interest. Exploiting the special structure of these models,
the large-sample behaviors of maximum likelihood estimators such as 8 under equivalent MPH
models were described and compared. These results use asymptotic arguments that are valid
provided the numbers of constraints and populations are fixed and all of the expected counis
approach infinity at the same rate. This precludes the regression setting where the numbers of
constraints and populations grow concomitantly.

As the examples of Section 3 illustrate, the class of homogeneous linear predictor models is
very rich, because the link L in L(m) = X3 is allowed to be many-to-one. When L is many-
to-one, the likelihood cannot be reparameterized in terms of 3 alone, so standard methods for
obtaining maximum likelihood fit results are not applicable. For this reason, these many-to-one
link models are typically fitted using non-likelihood methods such as weighted least squares (cf.
Grizzle et al. 1969, Stokes et al. 1995). This paper uses the less standard approach of Aitchison
and Silvey (e.g., 1958, 1960) and rewrites the models in terms of constraint functions. Using
the constraint approach, maximum likelihood estimation is straightforward, and describing the
large-sample behavior of estimators is relatively simple. Moreover, the constraint approach is
enlightening in that the effect of the sampling plan on the large-sample behavior of maximum
likelihood estimators and goodness of fit statistics can be seen in very explicit form.

The class of probability freedom models of Section 4 contains the class of models considered
in Baker (1994). The class herein is broader because many more sampling plans are considered—
we do not restrict attention to Poisson and product-multinomial counts; instead, counts are
allowed to be realizations of random vectors that have a multinomial-Poisson (MP)} distribution.
Baker (1994) gives several examples to illustrate the usefulness of the multinomial-to-Poisson
transformation. In particular, for each example, Baker argues that inferences about 8 in m = f(3)
are identical for both the original product-multinomial and the transformed Poisson model. The
current paper expands on this not only by considering the broader collection of MP models, but

also by giving a more complete comparison of maximum likelihood fit results for the MP model
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and the population equivalent Poisson model.

Finally, as mentioned previously, maximum likelihood fitting for homogeneous linear predictor
models is relatively straightforward. In fact, maximum likelihood fitting is straightforward for any
MPH model (including probability freedom models) that can be explicitly written in constraint
form. The author has written a computer program that produces maximum likelihood fit results
for any MPH model. The program uses a modified Newton-Raphson algorithm that is similar in
spirit to the algorithms of Aitchison and Silvey (1958) and Lang and Agresti (1994) to solve the

restricted likelihood equations (2) described in Section 2.
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